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Abstract

Nonlinear harmonic generation in a uniform planar undulator is analyzed using the three-dimensional Maxwell–
Klimontovich equations that include both even and odd harmonic emissions. After a certain stage of exponential
growth, the dominant nonlinear harmonic interaction is caused by strong bunching at the fundamental. As a result,

gain length, transverse profile, and temporal structure of these harmonic radiations are eventually determined by those
of the fundamental. Transversely coherent third-harmonic radiation power is found to approach one percent of the
fundamental power level for current high-gain FEL projects, while the power of the second-harmonic radiation is less
but still significant for relatively low-energy FEL experiments. r 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a high-gain free-electron laser (FEL) employ-
ing a planar undulator, a one-dimensional (1-D)
model [1] and a three-dimensional (3-D) simula-
tion [2] indicate that strong bunching at the
fundamental wavelength can drive substantial
harmonic bunching and sizable power levels at
the harmonic frequencies. A 3-D analysis of
harmonic generation in a uniform planar undu-
lator has been given in Ref. [3], for the process of
coherent amplification (CA) and self-amplified
spontaneous emission (SASE). In this paper, we
extend the formalism of Ref. [3] to include the
generation of even harmonics and present analytic

formulas for computing the second and the third
nonlinear harmonic powers as well as the bunch-
ing parameters. Explicit calculations based on
current high-gain FEL projects show that the
power of the transversely coherent third-harmonic
radiation can approach one percent of the funda-
mental power level, while the power of the second-
harmonic radiation is less but still significant for
relatively low-energy FEL experiments.

2. Nonlinear harmonic generation

For an electron in a planar undulator (with the
undulator parameter K), the transverse wiggling
motion in the x plane is accompanied by a
longitudinal oscillation (at twice the transverse
frequency cku) about the average longitudinal
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position ctn: This figure-eight motion (in the
comoving frame) can give rise to harmonic
emissions. Let us represent the electric field in
the form
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where x ¼ ðx; yÞ represents the transverse coordi-
nates, ck1 ¼ 2g2

0cku=ð1 þ K2=2Þ is the fundamental
resonant frequency, and jEðnÞj is the field ampli-
tude at frequency o ¼ nk1c:

It is convenient to treat z; the distance from
the undulator entrance, as the independent vari-
able, and change the dependent coordinate from
t to y by yðzÞ ¼ ðku þ k1Þz � ck1t

n ¼ ðku þ k1Þz �
ck1t þ x sinð2kuzÞ; where x ¼ K2=ð4 þ 2K2Þ: The
Maxwell equation under the paraxial approxima-
tion becomes
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where Ne is the total number of electrons, and xb
j

and ybj describe the transverse betatron oscilla-
tions. Because the transverse wiggling amplitude is
normally smaller than the transverse dimension of
the electron beam, we approximate
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j
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where d0 ¼ dd=ðdxÞ: Since the FEL interaction and
the betatron oscillation occur on a scale much
longer than the fast wiggling motion, we average
Eq. (2) over the undulator period lu with the help
of the Bessel function expansion

einx sinð2kuzÞ ¼
XþN

p¼�N

JpðnxÞei2pkuz: ð4Þ

Inserting the first term of Eq. (3) into Eq. (2), we
find that the wiggling average is nonzero only

when n is close to an odd integer h ¼ �ð2p71Þ [4]
and obtain the equation for odd harmonics [3]:
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where Dnh ¼ n� h51 is the frequency detuning
and the effective coupling strength is

Kh ¼ Kð�1Þðh�1Þ=2½Jðh�1Þ=2ðhxÞ � Jðhþ1Þ=2ðhxÞ�;

h ¼ 1; 3; 5;y : ð6Þ

Inserting the second term of Eq. (3) into Eq. (2),
we find that the wiggling average is nonzero only
when n is close to an even integer h ¼ �ð2p72Þ [5]
and obtain the equation for even harmonics:
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where the effective coupling strength is

Kh ¼ Kð�1Þðh�2Þ=2J 0
h=2ðhxÞ; h ¼ 2; 4;y : ð8Þ

Hence, in the forward z direction of a perfectly
aligned undulator trajectory, even harmonic emis-
sions are present due to the transverse gradient of
the electron current in the wiggling plane.

The electron distribution in phase space is
described by the Klimontovich distribution func-
tion f ðy; Z;x; p; zÞ; where Z ¼ ðg� g0Þ=g0; and p ¼
dx=dz are the conjugate variables to y and x:
Using the Pierce parameter r [6], we introduce the
following scaled variables:
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Z
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Eqs. (5) and (7) can be written as
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The evolution of the distribution function is
governed by the Klimontovich equation integrated
along the unperturbed trajectory [3]:
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Here the summation of h is extended to include the
interactions with the even harmonics. The unper-
turbed trajectory is described by

yð0ÞðsÞ ¼ yþ fð%s � %zÞ with

f ¼ %Z� ð%p2 þ %k
2
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where %kb ¼ kb=ð2kurÞ is the scaled betatron focus-
ing strength. f ð0Þ ¼ f0 þ df0 contains the initial
fluctuation df0 as well as the initial smooth
distribution f0; which is assumed to be
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where %sx ¼ sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rkuk1

p
and %sZ ¼ sZ=r are the

scaled beam size and scaled energy spread,
respectively.

Coherent harmonic radiation is generated
through nonlinear harmonic interactions. After a
certain stage of exponential growth, the domi-
nant nonlinear term has been shown to be
predominantly driven by the fundamental field
[3]. Thus, we consider the nonlinear harmonic
bunching determined by the fundamental
field only. In the small signal regime, we keep
the a1 term only in Eq. (11) and solve it by
iteration

f ðzÞEf0 þ df0 þ
X
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for hX1 and s0 ¼ %z: We note that Eq. (14) with
Eq. (15) is the approximate solution of Eq. (11)
when the nonlinear harmonic generation domi-
nates over the linear harmonic generation or the
spontaneous harmonic emission [3]. It becomes an
increasingly good approximation as the funda-
mental field is significantly amplified.

The evolution of the fundamental field is
obtained by solving Eq. (10) with h ¼ 1 and f
replaced by df0 þ f1ðzÞ [3,7]:
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Z
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�
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where m1 is the complex growth rate of the
fundamental mode A1ð %xÞ with the largest imagin-
ary part of m1: The first term of Eq. (16) describes
the process of coherent amplification from the
initial coherent signal a1ð%n; %x; 0Þ; and the second
term of Eq. (16) describes the process of self-
amplified spontaneous emission from the initial
shot noise df0: Inserting Eq. (14) into Eq. (10), we
find that ah (h > 1) is determined by fh with a
complex growth rate hm1; and that the character-
istics of the nonlinear harmonic generation are all
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determined by the fundamental field. While the
transverse profile of the odd harmonics is
azimuthally symmetric just as the fundamental
mode, the transverse profile of the even harmonics
possesses the odd symmetry in the wiggling plane
(the x plane) due to the transverse gradient effect
in Eq. (10).

3. Third-harmonic radiation

The most significant nonlinear harmonic
generation occurs at the third harmonic, given
by Eq. (10) for h ¼ 3 and f replaced by f3 of
Eq. (15). For a seeded FEL, we assume that
the external signal matches optimal detuning

%n0 for the fundamental field (with a complex
growth rate m0 that has the maximum imag-
inary part). We can set %n1 ¼ %n0 and %n3 ¼ 3%n0 and
drop the frequency dependence of a1 and a3

in Eq. (10). In view of Eq. (16), we write
a1ð %x; %zÞ ¼ e�im0 %zA1ð %xÞ; where A1EA0e

�w1R
2

is
the fundamental mode (R ¼ j %xj= %sx ¼ jxj=sx), and
A0 is the appropriate normalization coefficient.
Thus, we can write the third nonlinear harmonic
a3ð %x; %zÞ ¼ e�3im0 %zA3ð %xÞ with the transverse profile
A3 given by [3]
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where tm ¼ %sm � %sm�1 for m ¼ 1; 2; 3; and %s0 ¼ %z:
We have extended the lower limit of the integralR

dtm to �N due to the exponential growth.
Solving Eq. (17) with the Hankel transformation,
we obtain [3]
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Eq. (18) can be computed using a discrete Hankel
transformation. In general, the third-harmonic
radiation is also transversely coherent with a
Gaussian-like profile and a narrower spot size
than the fundamental.

For a SASE FEL, the fundamental radiation
starts with a white noise spectrum and has a finite
gain bandwidth. In the time domain, the temporal
structure of the fundamental is chaotic with many
random spikes. Due to the nonlinear generation
mechanism, the temporal structure of the third-
harmonic radiation is similar to the fundamental,
but with more fluctuation from spike to spike. It
can be shown that [3]

A3ðy;R; %zÞE
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K1
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2
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where G1ðy; %zÞ is a Gaussian random variable in y
and a slowly varying function in %z for SASE
(G1 ¼ 1 for CA), H0 ¼ ðK3=K1Þ

R
Q dQH3ðQÞ; and

w3 characterizes the transverse profile of the third-
harmonic radiation. The average radiation power
can be obtained by integrating over the transverse
intensity profile and averaging over the temporal
fluctuation. Thus, we have [3]
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Here Pbeam ¼ 2ps2
xgmc3n0 is the total electron

beam power, and w1r and w3r are the real parts
of w1 and w3: Thus, the third-harmonic radiation
for a SASE FEL has a power level roughly 6 times
larger than the corresponding steady-state case,
but with more shot-to-shot fluctuations compared
to the fundamental [3]. The third-harmonic
bunching parameter is obtained by averaging
ðe�3iyf3Þ over the 6-D phase-space volume and
taking the absolute value [3]:
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For example, using the design parameters (see
Table 1) for the low-energy undulator test line
(LEUTL) FEL at the Advanced Photon Source [8]
and the proposed Linac Coherent Light Source
(LCLS) at Stanford Linear Accelerator Center [9],
we can compute the transverse profile of the third
harmonic through Eqs. (18), (19) and (20) see Figs.
1 and 3 of Ref. [3]). The third-harmonic power and
the bunching parameter are also calculated ac-
cording to Eqs. (22) and (23). Table 1 lists the
results when the fundamental power reaches one-
half of the saturation power, when the exponential
growth process is supposed to stop. We have
compared the evolution of the third-harmonic

power for the LEUTL FEL with the steady-state
MEDUSA simulation [2], and the third-harmonic
bunching for the LCLS case with the steady-state
GINGER simulation [3]. Good agreement for
both cases have been found.

4. Second-harmonic radiation

The second-harmonic radiation can be calcu-
lated from Eq. (10) with h ¼ 2 and f replaced by
f2 of Eq. (15). One can follow the same pro-
cedure as in Section 3 to solve for the second-
harmonic field for CA and SASE, except that
the Hankel transformation should be replaced
by the 2-D Fourier transformation in x and y
because the radiation profile has the odd
symmetry in x: Since the wiggling amplitude
K=ðg0kuÞ is usually much smaller than the rms
beam size sx; the power of the second-harmonic
radiation is less than that of the third harmonic.
We can estimate the power of the second-
harmonic radiation by

P2

b2
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K
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� �2
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b2
3
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Table 1

Nonlinear harmonic generation for SASE FELs

LEUTL LCLS

E-beam and undulator

Energy 220 MeV 14:4 GeV

Peak current 150 A 3400 A

Normalized emittance 5 mm 1:5 mm

Energy spread 0.1% 0.02%

Average beta function 1:5 m 18 m

Undulator period 3:3 cm 3 cm

Undulator strength 3.1 3.71

Fundamental radiation

Resonant wavelength 518 nm 1:5 (A

Power gain length 0:67 m 6:1 m

Saturation power ðPsatÞ 70 MW 8 GW

Harmonics at P1 ¼ Psat=2
3rd-harmonic power 3:6 MW 15 MW

3rd-harmonic bunching 0.39 0.018

2nd-harmonic power 550 kW 15 kW

2nd-harmonic bunching 0.47 0.056
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Here the second harmonic bunching parameter b2

is obtained by averaging ðe�2iyf2Þ over the 6-D
phase-space volume and taking the absolute value
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Using the LEUTL and LCLS examples, we
calculate the second-harmonic bunching and
estimate the second-harmonic power by Eq. (24).
From Table 1, we see that a significant amount of
second-harmonic radiation can be generated in the
LEUTL FEL because the wiggling amplitude
(proportional to 1=g0) is about one-third of the
beam size. However, for X-ray FELs employing a
high-energy electron beam, such as the LCLS, the
second-harmonic radiation is much reduced.

5. Conclusion

We have presented a perturbation scheme to
analyze the 3-D evolution of the nonlinear
harmonic radiation in coherent amplification and
self-amplified spontaneous emission, with explicit
calculation of second-harmonic and third-harmo-
nic radiation based on current high-gain FEL
projects. The transverse coherence and the sub-
stantial power level of the third harmonic could be
useful in extending the short wavelength reach of a
high-gain FEL.
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